
Projeto de Equipamentos

Microcontrolados

Roberto Tavares

Ei, psiu! Um recado importante!

Este livro foi escrito com muito esforço, café e talvez algumas madrugadas sem dormir. Então, por favor, não copie, não compartilhe sem autorização e não jogue spoilers por aí! Se você curtiu o conteúdo e acha que alguém mais deveria ler, a melhor forma de apoiar é recomendando a compra oficial.

A cópia, distribuição ou compartilhamento não autorizado, seja em formato impresso ou digital, prejudica o trabalho do autor e desvaloriza o esforço dedicado à produção deste conteúdo. Lembre-se: cada cópia não autorizada é um escritor chorando em um canto (e possivelmente planejando vingança literária). Seja legal, apoie o autor!

Copyright @ 2025 por Roberto Tavares

Histórico de impressões:

- Março/2025 Segunda edição Digital e Física
- Maio 2025 Revisão 2.1 Digital
- Junho 2025 Revisão 2.2 Digital

Todos os direitos reservados e protegidos pela lei 9.610 de 19/02/1998. É proibida a reprodução desta obra, mesmo parcial, em qualquer processo, sem prévia autorização, por escrito, do autor e da editora.

Para interagir com o autor, visite o canal eletrohow, no YouTube, ou a página eletrohow.com.

Projeto de equipamentos microcontrolados

Uma abordagem prática e abrangente -Segunda edição

Roberto Tavares

Sumário

1. Uma visão geral deste livro	1
2. Um dia comum	5
2.1. Considerações preliminares sobre um projeto	7
2.2. Uma visão executiva sobre um novo projeto	8
2.3. O ciclo de vida de um projeto de equipamentos	9
3. Os diagramas do sistema	17
3.1. O diagrama de contexto	17
3.2. Detalhando o diagrama de contexto	18
3.3. Considerações sobre a escolha do microcontrolador .	20
4. A escolha do ambiente de desenvolvimento para o ESP32	27
4.1. Arduino IDE	27
4.2. PlatformIO	28
4.3. ESP-IDF (Espressif IoT Development Framework)	29
4.4. MicroPython	30
4.5. NodeMCU (Lua)	31
4.6. Eclipse com ESP-IDF	31
4.7. VSCode com ESP-IDF Extension	32
4.8. Qual escolher?	33
5. Conhecendo a placa DoIt Kit ESP32 v.1. 30 pinos	35
5.1. O pino D22	35
5.2. O pino D23	43
6. Instalando a IDE Arduino no Linux Mint	55
6.1. Adicionar Suporte ao ESP32	56
7. O ambiente de desenvolvimento de hardware	59
7.1. Módulos para a prototipagem	59
7.2. Atribuindo periféricos aos pinos do ESP32	60
7.3. Um teste rápido dos ambientes de software e hardwar	e 70
8. Configurando dados sensíveis fora do código fonte	75
8.1. Uso de Arquivo de Cabeçalho Externo ('secrets.h'):	75
8.2. Armazenamento em Memória Não Volátil (NVS):	76
8.3. Uso de Bibliotecas de Gerenciamento de Wi-Fi:	77
8.4. Considerações Adicionais:	78
8.5. Detalhes operacionais da hiblioteca WiFiManager	78

8.6. Passos para Utilização:
8.7. Considerações Importantes:
8.8. Utilizando a WifiManager para outros campos de dados 82
8.9. Explicação do Código
8.10. Como Funciona na Prática
8.11. Personalização Adicional
8.12. Considerações Finais
8.13. Configurando de forma persistente, salvando os dados em
memória não volátil
8.14. Explicação do Código
8.15. Considerações Finais
9. O módulo RTC do ESP32
9.1. Principais Características do Módulo RTC do ESP32: 99
9.2. Uso Típico:
9.3. Exemplo de Código (Usando o Arduino IDE): 101
9.4. Corrigindo o RTC através da internet
9.5. Explicação do Código:
10. Interagindo com a memória não volátil do ESP32113
10.1. A API da biblioteca Preferences
10.2. Exemplo de firmware para acessar a memória
10.3. Considerações Importantes
11. Conhecendo a interface I2C
11.1. Características Principais da comunicação I2C: 123
11.2. A I2C no ESP32
12. Conhecendo a interface SPI
12.1. Características Principais do SPI:
12.2. Funcionamento:
12.3. Aplicações:
12.4. Vantagens:
12.5. Desvantagens:
12.6. A SPI na CPU ESP32
12.7. Exemplo de conexão SPI com leitor/gravador de cartões
microSD
12.8. Explicação do Código:
12.9. Saída Esperada no Monitor Serial:
13. A interface 1-Wire

13.1. Características do 1-Wire:
13.2. Componentes necessários para este experimento:14
13.3. Conexão física:
13.4. Código na IDE Arduino para ESP32:
14. A interface Wifi No ESP3214
14.1. Consumo de Energia14
14.2. Interferência e Alcance
14.3. Limitações de Conexões Simultâneas
14.4. Desempenho e Latência
14.5. Segurança
14.6. Estabilidade da Conexão
14.7. Limitações de Memória
14.8. Compatibilidade com Redes
14.9. Aquecimento
14.10. Limitações de Firmware
14.11. Concorrência com Outras Funcionalidades
14.12. Configuração de Rede
14.13. Conclusão
14.14. Código do ESP32
14.15. Explicação do Código
14.16. Acessando a Interface
14.17. Personalização
15. Conhecendo os sensores utilizados
15.1. Conhecendo o sensor AHt1016
15.2. Conhecendo o sensor DS18B20
16. Conhecendo o módulo gravador/leitor MicroSd HW-125 17
16.1. Características:
16.2. Funcionamento:
16.3. Considerações Importantes:
16.4. Outras Aplicações:
16.5. Conexões com o ESP32 DoIT V1.1:
16.6. Código de Exemplo:
16.7. Explicações e Considerações:
16.8. Como Utilizar:
16.9. Dicas:
17. Medindo a tensão da bateria

	17.1. Opção divisor resistivo na entrada	186
	17.2. Opção MOSFET para Controlar o Divisor Resistivo	190
	17.3. Opção amplificador Operacional	192
	17.4. Opção IC Específico para Medição de Tensão	193
	17.5. Opção Capacitor para Amostragem	194
	17.6. A solução empregada. Carga de um capacitor	197
18.	Interagindo com o Telegram	203
	18.1. Por que utilizar o telegram?	203
	18.2. Telegram no Controle de Dispositivos IoT:	204
	18.3. Controle de Dispositivos via Telegram com o ESP32	205
	18.4. Configuração do Bot no Telegram:	206
	18.5. Bibliotecas Necessárias:	206
	18.6. Código fonte	206
	18.7. Operação:	209
19.	Iniciando o desenvolvimento do programa do registrador $\ldots\ldots$	211
	19.1. Implementação da tarefa Tick e acionamento da tarefa	
	AcendeLed	212
	19.2. Melhorando a eficiência energética do pisca pisca $\ldots\ldots$	215
	19.3. Interface WEB preliminar	
20.	Inserindo o processamento de um cartão microSD (SPI) $\ldots\ldots$	
	20.1. Definindo a estrutura de dados	230
21.	Inserindo o código de controle do sensor de temperatura	
DS	18B20	241
22.	Inserindo o sensor de temperatura e umidade ATH10 $\ldots\ldots\ldots$	
	22.1. Características do ATH10:	249
	22.2. Conexão do ATH10 com o ESP32:	
	22.3. Programa para ESP32 (Interface Arduino):	
	$22.4.\ Uma$ visão geral do software desenvolvido até o momento	
23.	Inserindo a monitoração da bateria	
	23.1. Código com medida da bateria inserido	
	23.2. Descrição do código	272
24.	Mantendo o relógio sempre acertado	
	24.1. Código com sincronismo do RTC via WEB	
	24.2. Detalhamento do código	
25.	Mantendo o relógio sempre acertado	
	25.1. Código com sincronismo do RTC via WEB	293

	25.2. Detalhamento do código
26.	Sugestões de novas funcionalidades
	26.1. Melhoria na Gestão de Memória
	26.2. Tratamento de Erros
	26.3. Eficiência Energética
	26.4. Melhoria na Interface Web
	26.5. Sincronização de Tempo
	26.6. Melhoria na Leitura de Temperatura
	26.7. Melhoria na Leitura de Tensão da Bateria
	26.8. Documentação
	26.9. Testes e Validação
	26.10. Exemplo de Melhorias no Código:
	26.11. Conclusão
27.	RMT. Copiando um controle infravermelho
	27.1. O que é o RMT?
	27.2. Por que o RMT é usado para infravermelho? 315
	27.3. Como o RMT funciona (visão simplificada)
	27.4. Exemplo de uso típico
	27.5. Bibliotecas úteis
	27.6. Aplicações do RMT além do IR:
	27.7. O que você precisa:
	27.8. Instalação da biblioteca
	27.9. Conexões sugeridas
	$27.10.\ C\'{o}digo\ completo\$
	27.11. Código para gravar vários botões e repetir via WiFi \dots 320
	27.12. Como funciona
	27.13. Como usar:
	27.14. Estendendo a funcionalidade $\dots 326$
	27.15. Bibliotecas adicionais necessárias:
	27.16. Organização da EEPROM:
	27.17. Código atualizado
	27.18. Como usar:
28.	E chegamos ao final
Αpέ	èndice A: Proteção IP
	A.1. Primeiro dígito (proteção contra sólidos):
	A.2. Segundo dígito (proteção contra líquidos):

	A.3. Exemplos de classificação IP:
Α	pêndice B: Manual do Usuário
	B.1. Introdução
	B.2. Especificações Técnicas
	B.3. Instalação e Configuração Inicial
	B.4. Operação do Equipamento
	B.5. Manutenção e Solução de Problemas
	B.6. Segurança e Normas
	B.7. Anexos
	B.8. Considerações Finais
	B.9. Dicas para Redação do Manual
Α	pêndice C: Padrões mais comuns dos controles remotos
iı	nfravermelhos
iı	nfravermelhos
iı	
iı	C.1. NEC (ou NEC IR Protocol)
iı	C.1. NEC (ou NEC IR Protocol)
iı	C.1. NEC (ou NEC IR Protocol)
iı	C.1. NEC (ou NEC IR Protocol) 345 C.2. Sony SIRC (Sony Infrared Remote Control) 346 C.3. LG 346 C.4. Samsung 346
iı	C.1. NEC (ou NEC IR Protocol)
iı	C.1. NEC (ou NEC IR Protocol)

1. Uma visão geral deste livro

No mundo cada vez mais conectado e automatizado em que vivemos, os microcontroladores emergem como peças fundamentais na construção de sistemas inteligentes e eficientes. O avanço da tecnologia embarcada tem revolucionado a forma como desenvolvemos produtos eletrônicos, tornando possível a criação de dispositivos cada vez mais inteligentes, acessíveis e interconectados.

Presentes em uma infinidade de aplicações, desde dispositivos médicos e automotivos até sistemas industriais e dispositivos IoT (Internet das Coisas), esses pequenos componentes são a espinha dorsal da tecnologia moderna. Projetar sistemas baseados em microcontroladores, no entanto, não é uma tarefa trivial. Exige uma combinação de conhecimento teórico, habilidades práticas e uma visão abrangente das necessidades do projeto.

Entre as plataformas mais populares para esse tipo de desenvolvimento estão o ESP32 e o Arduino, que oferecem recursos poderosos aliados a uma comunidade vibrante e um ecossistema rico de ferramentas. É com estas plataformas que vamos mostrar experimentos práticos que exemplificam os conceitos apresentados.

Este livro foi concebido como um guia prático e teórico para engenheiros, estudantes e entusiastas que desejam dominar a arte e a ciência do projeto de equipamentos baseados em microcontroladores. Nosso objetivo é fornecer uma abordagem clara e estruturada, que vá desde os conceitos básicos até

as técnicas avançadas, permitindo que o leitor não apenas compreenda os fundamentos, mas também seja capaz de aplicar esse conhecimento em projetos reais.

Ao longo dos capítulos, exploraremos os principais aspectos do projeto de sistemas embarcados, incluindo a seleção de microcontroladores, o desenvolvimento de firmware, a integração de sensores e atuadores, e a otimização de desempenho e consumo energético. Também abordaremos tópicos essenciais como depuração, testes e documentação, que são cruciais para o sucesso de qualquer projeto técnico.

Este livro não pretende ser apenas um repositório de informações técnicas, mas sim uma ferramenta que inspire a criatividade e a inovação. Acreditamos que, ao dominar os conceitos e práticas apresentados aqui, você estará preparado para enfrentar os desafios do desenvolvimento de sistemas embarcados e contribuir para a criação de soluções tecnológicas que impactem positivamente a sociedade.

Nosso compromisso com a atualização constante faz com que esta obra seja revisada anualmente, incorporando novas tecnologias, melhores práticas e as tendências mais relevantes do setor. Assim, garantimos que você tenha sempre em mãos um material atualizado e alinhado com a evolução do mercado.

Agradecemos a você, leitor, por embarcar nesta jornada conosco. Que este livro seja um recurso valioso em sua trajetória profissional e acadêmica, e que ele o ajude a transformar suas ideias em realidade.

Boa leitura e bons projetos!

Roberto Tavares

Março/2025

2. Um dia comum...

Imagine você, contratado como responsável pelo desenvolvimento de produtos cyber-físicos de uma pequena empresa. Você estava tranquilo, atualizando o software de um produto recém entregue ao mercado, quando, de repente, uma mensagem chega pelo WhatsApp. O pessoal de marketing estava solicitando uma reunião. Queriam a sua opinião sobre a viabilidade técnica e econômica de um novo desenvolvimento.

E deviam estar esperando a sua resposta bem por detrás da porta de sua sala, pois bateram cinco segundos depois que você respondeu dizendo que estava livre, e que a reunião poderia acontecer agora. E logo após os cumprimentos de praxe, apresentaram o que para eles era toda a especificação de um equipamento que tinham identificado como de bom potencial de mercado.

- Dev. Identificamos uma oportunidade de mercado para um produtos que estamos chamando de Thermo Duo. Definimos o seguinte:
 - O Thermo Duo é um equipamento que tem como objetivo o registro de temperatura de dois pontos distintos ao mesmo tempo. Seu uso inicial é o registro da temperatura da água de um aquário e da temperatura ambiente.
 - O equipamento deve fornecer tanto os valores instantâneos de temperatura como os valores registrados no ano. Neste último caso precisamos da informação em formato gráfico.

- A temperatura deve ser medida com a precisão mínima de 0.5 graus centígrados.
- As medidas devem ser realizadas em intervalos programáveis, de 1 em 1 minuto, de 1 a 60 minutos de intervalo total.
- O equipamento deve poder trabalhar sem energia externa por no mínimo 24 horas.
- A visualização dos dados deve ser realizada por WiFi. O acesso deve ser habilitado a plataformas diversas, tais como Linux, Windows, Mac,Android e IOS.
- O gabinete deve atender no mínimo à proteção IP54.

Um silêncio indicou o fim das especificações. Estas especificações tinham sido levantadas pelo pessoal de marketing junto aos clientes mais fieis da empresa, e também por pequisa de mercado. Tinham investido bastante tempo e recursos financeiros para o levantamento, e esperavam que isto fosse algo factível de ser realizado antes do final do ano. Algo como 9 meses entre a concepção e a disponibilidade do produto. Um tempo muito curto, eles sabiam.

— Deixe o resto com nossa equipe, você responde com um sorriso. Ainda sem uma ideia formada de como seria isto, mas afinal é para resolver estas situações que você conseguiu este emprego...

Este é o desejo do marketing. Como responsável pelos novos produtos, cabe a você transformar estas ideias em algo real, competitivo e eficiente.

Embora você não tenha falado nada quando o marketing especificou o gabinete IP54, você não se lembrava bem quais eram os requisitos específicos para este tipo de gabinete. Mas bastou ver o Apêndice 1 deste livro para ficar tranquilo. Os requisitos não eram nada difíceis de serem atendidos.

O próximo passo é o ante-projeto do sistema.

2.1. Considerações preliminares sobre um projeto

Enquanto todos tomavam um café após a reunião, você não pode deixar de pensar como a tecnologia veio permitir que projetos deste tipo fossem viáveis para empresas com relativamente poucos recursos, como a sua.

O surgimento dos microcontroladores tornou possível o desenvolvimento de instrumentos sofisticados a um custo muito baixo comparado com a opções de algum tempo atrás. A possibilidade de prototipagem rápida com módulos disponíveis do mercado encurta o tempo entre a concepção do produto e a disponibilização para o mercado a valores inacreditáveis para aqueles acostumados com o projeto de sintemas puramente analógicos ou com integração em baixa escala.

A criação de um projeto de equipamentos baseados em microcontroladores envolve várias etapas, que vão desde a concepção inicial até a embalagem final do produto. O sucesso técnico e comercial do equipamento exige um trabalho que se inicia bem antes de compramos os módulos ou sentarmos na frente do computador de desenvolvimento. Veja a seguir as etapas típicas de um projeto deste tipo.

2.2. Uma visão executiva sobre um novo projeto

Antes de iniciarmos o ante-projeto, uma visão executiva ampla deve decidir pelo interesse no desenvolvimento.

- Identificação da Necessidade: Defina o problema a ser resolvido ou a necessidade do mercado. Neste caso, esta parte já foi realizada pela equipe de marketing.
- Especificações do Produto: Determine as funcionalidades desejadas, desempenho, interface do usuário, consumo de energia, dimensões e custo-alvo. Praticamente tudo já realizado pela equipe de marketing. Você pode estabelecer alguns limites neste ponto, sempre em conjunto com a equipe que irá comercializar o equipamento.
- Avaliação de Viabilidade: Verifique a viabilidade técnica e econômica do projeto. Esta é uma responsabilidade totalmente sua. Exige experiência e conhecimento de mercado. A partir de um diagrama de blocos inicial você identifica os componentes principais do produto e faz uma avaliação preliminar do custos e prazos envolvidos. Quanto mais experiencia com

projetos similares você tiver, mais precisa será a sua avaliação.

Isto realizado, e decidido pela pertinência do projeto, entramos no ciclo de vida de um projeto.

2.3. O ciclo de vida de um projeto de equipamentos

Veja as atividades que iremos precisar realizar durante o projeto de um equipamento. Não é nosso objetivo aqui detalhar cada item, isto é muito material para um único livro, mas será assunto de livros a serem lançados nos próximos meses. O nosso objetivo é te mostrar tudo que precisa ser dimensionado. E não se preocupe se algum item não for compreendido por você. Tudo será explanado no seu devido tempo.

2.3.1. Você compreendeu mesmo o que o cliente deseja?

• Documentação Inicial: Crie um escopo do projeto, incluindo um diagrama de blocos funcional. Faça algo como um "manual de usuário" e encaminhe para o marketing ou para o cliente que lhe solicitou o projeto.

É com este manual que formamos a convição que o projeto foi

compreendido por nós como foi idealizado pelo solicitante. NÃO avance no projeto antes de receber o aval do solicitante. É muito fácil nos enganarmos na interpretação do que nos foi solicitado para implementação.

Mas antes de partirmos para os diagramas do anteprojeto, vamos abrir espaço para uma visão geral do ciclo de vida do projeto de um equipamento. É importante termos a visão global do que precisamos fazer antes de focarmos nos detalhes.

2.3.2. Avaliação do hardware necessário

- Escolha o Microcontrolador: Selecione um microcontrolador que atenda às especificações de processamento, memória, periféricos e custo.
- Componentes Adicionais: Defina sensores, atuadores, fontes de alimentação, displays e interfaces de comunicação necessários.
- **Esquemático:** Desenvolva o diagrama esquemático com todas as conexões elétricas.
- Layout da PCB: Projete a placa de circuito impresso (PCB), levando em consideração o roteamento das trilhas de potência e dados e os requisitos da montagem. Esta placa não deve ser fabricada ainda. Serve apenas para termos ideias das dimensões e complexidade. A placa final só deve ser definida quando os testes